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R. Baldini1, S. Dubnička2, P. Gauzzi3, S. Pacetti1, E. Pasqualucci3, Y. Srivastava4

1 INFN Laboratori Nazionali di Frascati, Italy
2 Ist. of Physics, Slovak Acad. of Sciences, Bratislava, Slovakia
3 Dipartimento di Fisica dell’Università and INFN, Roma “La Sapienza”, Italy
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Abstract. The nucleon magnetic form factors in the unphysical region, i.e., for time-like Q2 but below the
NN threshold, have been obtained by means of dispersion relations in a model-independent way, without
any bias towards expected resonances. Space-like and time-like data have been employed, along with a
regularization unfolding method to solve the integral equation. Remarkably, resonance structures with
peaks for the ρ(770) and ρ′(1600) and a structure near the NN threshold are automatically generated. The
obtained ρ has a much larger width, whose significance is explored. No evidence is found for a peak at the
Φ mass, in spite of the expectation that such a peak exists when there is a sizeable polarized ss content in
the vector current of the nucleon.

Introduction

Nucleon spectral functions and electromagnetic form fac-
tors (FF) play a fundamental role in our understanding of
the hadronic dynamics. Hence, for over 30 years, many at-
tempts have been made through dispersion relations (DR)
[1–3,8,9,12] to unravel the spectral functions and the FF
in the time-like region, in particular for unphysical Q2 be-
low the NN threshold. In principle, spectral functions and
FF in the time-like region may be computed via DR from
the measurements of the space-like FF only [12]. However,
this is an ill-posed mathematical question, because the an-
swer depends in an unstable way on the input data, and an
impossible accuracy is needed to get a unique, stable solu-
tion [12,13]. Up to now, most of the FF evaluations in the
time-like region have been done under the assumption of
the vector dominance model (VDM) [4], unitarized VDM
[5], or in the framework of the Skyrme model [6,7]. The
lack of data on e+e−→NN had prevented much progress
in this endeavor.

Recently, measurements of the proton time-like mag-
netic FF have been done on a large Q2 interval [14,15] and,
even more recently, data concerning the neutron time-
like FF have also become available [16]. These data turn
out to be quite different from QCD expectations [17,18].
In particular, it has been shown that the neutron time-
like magnetic FF measurements are twice those predicted
by a dispersive approach [9], assuming perturbative QCD
(PQCD) asymptotic behaviors and a reasonable model for
unphysical Q2. Different conclusions have been achieved
on the basis of a unitarized VDM [10]. Yet the discrep-
ancy is large enough to prompt further measurements of
the neutron time-like FF [9], and new proposals toward

this purpose are under way [19]. Pending future exper-
iments, let us explore some implications of the available
experimental data, through a consideration of several open
questions:

– A sizeable, polarized, ss content in the nucleon has
been suggested a long time ago and has been resumed
to interpret sum rules violations in deep inelastic scat-
tering of polarized leptons on polarized nucleons [20];
an ss content is also suggested by the nucleon sigma
term and other measurements [21]. The evidence, or
lack thereof, of a sizeable Φ peak in the nucleon mag-
netic FF in the unphysical region, obtained in a model-
independent way, would be a very direct check of a
polarized ss content in the vector current.

– At high Q2, the neutron time-like magnetic FF is found
to be larger than that for the proton, while one had
expected it to be – as in the space-like region – ∼ 1/2
of the proton magnetic FF [17,18]. This indicates some
nontrivial dynamical activity in between.

– At high Q2, the size of the time-like proton magnetic
FF itself is somewhat unexpected, since it is twice the
value of its space-like FF counterpart at the same |Q2|.
We note that PQCD [22] and analyticity [23] predict
both to be asymptotically the same.

– Below threshold, there are indications for narrow struc-
tures in the total σ (e+e− → hadrons) cross section
[24], suggested also by the proton and the neutron FF.
These may be related to similar effects in p̄d annihila-
tion in odd and even C channels [25] and suggest a close
investigation of the FF just below threshold (in prin-
ciple, such is feasible experimentally, through a very
high statistics analysis of the reaction pp → e+e−π0

[26]).
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– FF phases are needed to interpret anomalies in J/Ψ →
hadrons [27].

In the present work, we shall assume that the available
data are indeed reliable, and we shall use them as input to
evaluate the FF for unphysical Q2. To make our results as
model-independent as possible, we do not bias our analy-
sis towards expected resonances. Instead, we let resonance
structures and phases arise directly from the solution of
the DR. In contrast with the past, presently the nucleon
FF are unknown in a limited interval only. Thus, continu-
ity through the interval limits can be implemented. Hence
the concerns mentioned above about a stable evaluation
may be relieved, being an interpolation rather than an an-
alytical continuation. Unfortunately, present accuracy is
still not sufficient to provide a unique solution. Until even
better time-like data become available, we seek a solution
under an additional smoothness hypothesis, implementing
the regularization method described below.

1 Solving DR by means
of a regularization method

In order to get a form factor G(Q2) for 0 < Q2 < 4M2
N

(with Q2 defined to be positive in the time-like region), DR
for log G(Q2) are considered [1]. The quantity log G(Q2),
just as G(Q2), is analytic on the first sheet of the complex
Q2 plane, with the same cuts on the real positive axis
and with additional poles where the FF has zeros. In the
following, we shall assume the absence of zeros (in FF) on
the first sheet. This hypothesis will be discussed later.

The DR relates the space-like log G(Q2) to the time-
like log |G(Q2)|. After making a subtraction at Q2 = 0,
we have [1]:

log G(Q2) =
Q2

√
Q2

0 − Q2

π

∫ ∞

Q2
0

log |G(t)|
t(t − Q2)

√
t − Q2

0

dt

(1)
where Q2

0 = 4m2
π.

Once log |G(Q2)| has been determined, the FF phase
δ(Q2) for time-like Q2 is given by:

δ(Q2) = −Q2
√

Q2 − Q2
0

π
Pr

∫ ∞
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t − Q2
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(2)
By splitting the integral in (1) into two parts,

∫ ∞
Q2

0
=∫ Q2

1
Q2

0
+

∫ ∞
Q2

1
, where Q2

1 = 4M2
N is the upper boundary of

the unphysical region, one can separate the unphysical re-
gion, in which the FF are unknown, from the experimen-
tally accessible region. In this way, an integral equation
of the first kind, linear in the unknown log |G|, can be
derived from the DR:

log G(Q2) − I(Q2) =
Q2

√
Q2

0 − Q2

π

×
∫ Q2

1
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log |G(t)|
t(t − Q2)
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dt (3)

where

I(Q2) =
Q2

√
Q2

0 − Q2

π

∫ ∞

Q2
1

log |G(t)|
t(t − Q2)

√
t − Q2

0

dt. (4)

This integral is a known quantity that can be calcu-
lated directly from the experimental data in the time-like
region with some recipe to extrapolate them to very high
Q2.

In order for instabilities in solving (3) to be avoided, a
regularization technique exploiting smoothness has to be
applied [13]. These techniques have been applied mostly in
the unfolding of a spectrum affected by a finite resolution,
to avoid the instability usually met in solving first-kind
integral equations. The procedure adopted here is as fol-
lows:

– I(Q2) has been calculated by fitting of the time-like
data to a rational, smooth function having the ex-
pected asymptotic behavior. The subtraction at Q2 =
0, as usual, helps in making the results less dependent
on the asymptotic extrapolation.

– A special treatment is adopted near the NN thresh-
old: The upper boundary of the unphysical region has
been shifted to Q2

2 = Q2
1 + ∆, with ∆ ' 0.5 GeV2, in

order that instabilities that may originate from steep
threshold behavior of the nucleon FF can be avoided.
A new DR is then considered for the region (Q2

1, Q
2
2)

as described in Sect. 3.
– Continuity of the function through the upper bound-

ary of the unphysical region is imposed. At the lower
boundary, 4m2

π, only a very mild continuity is de-
manded, in order to allow any steep variation.

– A regularization is finally introduced by the require-
ment that the total curvature of the FF in the un-
physical region, r =

∫ Q2
2

Q2
0

(
(d2|G(t)|)/(dt2)

)2
dt, be lim-

ited. Instead of the second derivative of log |G|, as in
the standard procedure [13], the second derivative of
|G| has been chosen for this purpose; the reason is
that fluctuations in |G| are important only when |G|
is large, while log |G| fluctuations would be important
when |G| is small also.

A linearization method has been used to solve (3): The
integrals have been transformed into sums over M = 50
suitable subintervals in Q2, with their widths increasing
with Q2. This is tantamount to a further smoothness hy-
pothesis, effectively integrating over any structure whose
half width is narrower than a minimum of about 50 MeV.

The integral over the jth subinterval has been approx-
imated by

Fj

∫ Tj+1

Tj

dt

t(t − Q2)
√

t − Q2
0

(5)

where Fj = log |G[(Tj+1 + Tj)/2]| is the function calcu-
lated in the middle of the subinterval with boundaries at
Tj and Tj+1.
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The integral equation (3) is then solved by minimiza-
tion of the quantity:

Rtot =
L∑

i=1




M∑
j=1

Fj
Q2

i

√
Q2

0 − Q2
i

π

×
∫ Tj+1

Tj

dt

t(t − Q2
i )

√
t − Q2

0

+I(Q2
i ) − log(G(Q2

i ))




2

+ τ6r(eFj ) (6)

where the Fj are free parameters and Q2
i , with i = 1, ..., L,

corresponding to experimental points available in the
space-like region.

The dumping parameter τ has to be set experimen-
tally. It will not respond to sharp structures if it is set too
large, whereas unstable solutions will found if too small a
value is used.

The uncertainties in the solution of (2) and (3), due
to the experimental errors, have been evaluated by the
simulation of new sets of space-like and time-like data,
according to the quoted errors, and the solution of the
DR for each simulated data set.

2 Test of the regularization method

To test the whole procedure and get a suitable range for
the τ parameter, we selected the pion FF. In the time-
like region, this FF is known up to the J/Ψ mass and at
higher Q2 is extrapolated according to first-order PQCD
prescriptions [22]. Pion space-like FF has been reobtained
in two ways: (i) according to (1), from the time-like data
and (ii) according to the unsubtracted DR. The latter is
in fair agreement with present space-like data, as is shown
in Fig. 1a. Their difference is most likely due to the un-
certainty in the data above the ρ and in the asymptotic
extrapolation, as is indicated by the effect of the inclusion
of a subtraction. This agreement also provides a check
that there are no relevant zeros in the isovector FF. This
check would have been airtight were the pion space-like
FF data for high Q2 not obtained through extrapolations
of the pion electroproduction data.

So that the τ parameter will be fixed, the space-like
dashed area, achieved by means of (1), and the time-like
dashed area, obtained by fitting of the data above Q2

2 =
4.0 GeV2, have been used as input in (6) to retrieve the
time-like pion FF in the region between Q2

0 and Q2
2. It

turns out that τ ∼ Mπ is a suitable value to recover quite
satisfactorily the ρ peak, the ρ width, and also the dip at
1.6 GeV, as shown in Fig. 2. It is worthwhile stressing that,
in solving the DR, steep structures like the ρ and even
the interference pattern beyond the ρ are well retrieved
from smooth inputs, once these inputs are built from these
structures.

The phase of the pion FF, from the solution of (2),
is shown in Fig. 3. Its expected asymptotic value of 180
degrees is already reached above ∼ 2 GeV [27].

a

Fig. 1. a Space-like pion a, proton magnetic b and neutron
magnetic c form factor from DR applied to time-like data. In
a the results with and without (dashed area) subtraction are
compared

3 The proton time-like magnetic FF

Some comments are in order about the hypotheses govern-
ing the extraction of the proton FF from cross section mea-
surements. It has been assumed that at threshold there is
only one FF, because GM (4M2

N ) = GE(4M2
N ), assuming

analyticity for electric and magnetic FF as well as for the
Pauli and Dirac FF, i.e. that exactly at threshold, there
is only an S wave. Data are consistent with this hypoth-
esis. Furthermore, at high Q2, the contribution of GE to
the total cross section is dumped by a factor 4M2/Q2. In
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Fig. 2. Pion form factor. The black shaded area is the solution
of (6), the gray shaded area is the input of the equation

conclusion, in the whole range explored, what is actually
measured is very likely to be GM .

Gp
M seems to reach its expected asymptotic behavior

1/Q4 quite precociously, but it is higher by a factor of 2
than Gp

M at the same space-like |Q2|, whereas asymptoti-
cally, they should be equal [23]. Therefore, an asymptotic
extrapolation done according to PQCD may be suspect.
Yet it has been checked that all the achieved results are
quite insensitive to the details of this extrapolation.

Very near threshold, the data show a steep variation
[15], beyond Coulomb enhancement (which has already
been corrected in the data). In the following, this steep
rise has been assumed to affect the FF in a limited Q2

region, below and above the threshold. This is the reason
for choosing Q2

2 = 4M2
N + ∆ as upper limit in (3). GM

and the first two derivatives are supposed to be continuous
functions through this upper limit.

Once a FF G0 has been determined from (6), another
DR is considered in the interval [Q2

1 − ∆, Q2
1 + ∆]:

Q2

π

∫ Q2
1

Q2
1−∆

log |G1(t)|
t(t − Q2)

√
t − Q2

0

dt

+
Q2

π

∫ Q2
1+∆

Q2
1

log |G1(t)|
t(t − Q2)

√
t − Q2

0

dt = 0 (7)

Fig. 3. Phase of pion (black shaded) and proton magnetic
(gray shaded) form factor according to (2)

where G1 is determined from the relation: GM = G0G1
in this interval and GM = G0 outside. Finally, the proton
magnetic FF in the unphysical region as obtained by our
procedure is reported in Fig. 4a.

The most striking feature of Fig. 4a is the evidence for
two resonances, not built in a priori, at M ∼ 770 MeV
and M ∼ 1600 MeV. It is most satisfying to deduce the
presence of ρ + ω and of ρ′ + ω′ exactly as expected. On
the other hand, the width of the bump at the ρ mass is
∼ 350 MeV, to be compared to Γρ ∼ 150 MeV. Old
analyses of the nucleon FF had already found a similar
discrepancy [2].

The anomalous width, mainly related to the real part,
turns out to be independent of the choice of the τ param-
eter within an order of magnitude. It cannot be due to
the bin width, whose contribution is added quadratically
and is relatively small in the ρ case. On the other hand,
as was mentioned previously, the ρ width was recovered
in the case of the pion FF.

Concerning the strange, polarized content of the nu-
cleon, there is no evidence of a bump at the Φ mass, even
if integrated on the bin width. If indeed the strange con-
tent of the nucleon is

∫
dQ2(|Gss

M |/|GM |)2 ∼ 0.15 ÷ 0.2,
it should be quite visible, concentrated mainly in the Φ
mass bin. However, for a more quantitative statement to
be made, the anomalous ρ width should be understood.

In Fig. 3, the phase of the proton magnetic FF is
shown, the spectral function and other plots are reported
elsewhere [31]. Above ∼ 2 GeV, the phase is ∼ 390 de-
grees, to be compared to the expected asymptotic value
of 360 degrees [27].

In Fig. 1b the proton space-like magnetic FF data are
compared with the expectation from the solution of the
DR on log G(Q2). The hypothesis there are no zeros on
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(a) (b)

Fig. 4a,b. Proton a and neutron b
magnetic form factor according to (6)

the physical Q2 sheet may be questioned. Yet, once the
imaginary part was achieved, a remarkable, nontrivial test
was performed [31]: Space-like FF data and the calcula-
tion by means of DR involving this imaginary part are in
good agreement, at least at low Q2 (as is expected if there
is no zero). Imposing full agreement does not produce sig-
nificant changes. Of course, a conspiracy by a suitable set
of zeros, restoring the ρ width, cannot be excluded.

4 The nucleon isovector time-like
magnetic FF

To obtain GV
M , the nucleon isovector FF, and GS

M , the
isoscalar one, the neutron FF has to be considered as well.
As was mentioned above, the neutron time-like FF have
been measured through only one experiment. The neutron
magnetic FF has been derived [16] under the hypothesis
that the neutron electric FF in the time-like region is much
smaller than the magnetic one, just as it is for space-like
region. In fact, data are consistent with an anisotropic an-
gular distribution. The DM2 measurement [28] of the Λ
FF leads to results in very good agreement with FENICE,
assuming U-spin invariance [29] and a Λ electric FF that
is also negligible. The relationship GM (4M2

n) = GE(4M2
n)

should imply that, just at threshold, also the neutron mag-
netic FF vanishes. This assumption, relevant very near
threshold only, has been considered in the following. In
Fig. 1c, the neutron space-like magnetic FF data are com-
pared with the expectation from the solution of the DR
on log G(Q2). The neutron magnetic FF in the unphys-
ical region, as obtained by our procedure, is reported in
Fig. 4b.

The hypothesis that the FENICE data are wrong by a
factor of ∼ 2 has been simulated, and the results are that
the height of the ρ′ resonance for the neutron is higher
than the height of the ρ′ resonance for the proton [31].
Therefore, the apparent anomaly in the FENICE data (the

neutron FF are not smaller than the proton FF) would still
be there, but shifted to another energy range.

GV
M and GS

M are derived from the aforementioned pro-
ton and neutron FF, and the imaginary part of GV

M is
shown in Fig. 5a. |GV

M | at its peak and its imaginary part
have been derived from the extended unitarity relation,
using pion FF data and analytic continuation of the πN
scattering amplitude, up to Q2 ∼ 0.8 GeV2 [8,9] (solid
line in Fig. 5a). Our result is in good agreement with this
expectation.

With a view toward exposing possible common pat-
terns in the near vicinity of the threshold, we have satis-
factorily compared a suitable linear combination of (GV

M )2
and (GS

M )2 [31] to the various measurements of the total
σ (e+e− → hadrons) cross section [24], taking into account
the Q2 bin width.

In Fig. 5b, the imaginary part of GS
M is shown. There

is a peak at the ω mass, whose half width is compatible
with the bin width, and remarkably, the imaginary part of
GS

M becomes different from zero at higher Q2 than GV
M ,

as expected.
There are predictions also for GS

M . For instance, chiral
perturbation theory suggests that the imaginary part of
GS

M is small up to Q2 ∼ 0.5 GeV 2 [30]. However, given
that GS

M comes from a difference and given also its sensi-
tivity to the bin width, the isoscalar sector is more affected
by the regularization procedure and thus demands further
work [31].

The fact that the total areas of the imaginary parts are
equal to zero is in agreement with the superconvergence
expectation.

Conclusions

The nucleon time-like magnetic FF in the unphysical re-
gion has been obtained in an almost model-independent
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(a) (b)

Fig. 5a,b. Imaginary part of the
nucleon magnetic isovector a and
isoscalar b form factor. Expectation
from unitarity relation is also shown in
a

way by means of a DR for log |G(Q2)|, using space-like
and time-like data together with a regularization method.

Resonances have been found to be consistent with the
ρ(770) and ρ′(1600) masses. However, a very large ρ width
is obtained. This result is reminiscent models in which
mesons are different from baryons. No evidence has been
found for a sizeable Φ contribution; this is contrary to
what is expected if there is indeed a large polarized strange
content in the nucleon. This work, which aims toward
the understanding of the sources of the discrepancies be-
tween our conclusions and other dispersion analyses, as
well as evaluations by means of the unitarized VDM, is in
progress.
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